6 th sem chemistry			
sr. no	topic	link	
	Unit 1		
1	Kinetic Aspects of Metal Complexes : [6]		
	Thermodynamic and kinetic stability of the complexes, factors		
	affecting stability of complexes.	https://youtu.be/PAVdBfqyIGU	
2	Brief idea about substitution reactions,		
	SN1-dissociative and SN2-associative mechanism.	https://youtu.be/epkXTEYqG0E	
3	Labile and inert		
	complexes.	https://youtu.be/DKR6cVs2qxY	
4	Factors affecting lability of complexes namely arrangement		
	of d-electrons (on the basis of VB theory), size of central metal ion,		
	charge of central metal ion, geometry of complexes	https://youtu.be/DZZEOgQpNGo	
5	Substitution reactions		
	in square planar complexes mechanism	https://youtu.be/4pJqBEOy OM	
6	Concept of ëmax, Beer-Lambert's law (https://youtu.be/WP6JpnHZJlQ	
7	Calibration curve and its importance	https://youtu.be/7YAlSdhUzFl	
8	alidity		
	and limitations of Beer-Lambert's law. Verification of Beer's law.	https://youtu.be/nMqBCkxfRMk	
9	Block		
	diagram of colorimeter and spectrophotometer with brief description of		
	each component and its function.	https://youtu.be/Y4iR1t6Mn5E	
10	Difference between colorimetric and		
	spectrophotometric technique for determination of concentration of metal		
	ion (Example of determination of Cu(II).	https://youtu.be/4zchWu5dYb4	
11	Paper Chromatography :- [4]		
	Definition and classification of chromatographic techniques	https://youtu.be/UT7TW_ursoA	
12	Principle of differential migration. Principle and technique of paper		
	chromatography -ascending, descending and circular , Rf value and factors		
	affecting Rf value.	https://youtu.be/YT7fz4K7G6s	
	Unit 2		
1	Organometallic Chemistry: [5]		
	Definition, nomenclature and classification of organometallic	https://youtu.be/8XF6xWaGxHY	

compounds.	
2 Metal carbonyls- definition and classification. Preparation,	
properties, structure and bonding in Ni(CO)4, Fe(CO)5, Cr(CO)6. Nature	
of M-C bond in metal carbonyls	https://youtu.be/u4LBLPMX48g
3 Definition and classification. Silicones: preparation, properties	
structure and bonding and applications.	https://youtu.be/KbKZR-WeLbU
4 Phosphonitrile halides	
polymers- preparation, properties, structure and bonding in cyclic polymers	https://youtu.be/vmgTv33klh0
5 Essential and trace elements in biological processes. Biological role	
of Na+, K+, Ca2+ and Mg2+ ions. Metalloporphyrins-Haemoglobin and	https://youtu.be/VqE-63nUevQ
Myoglobin and their role in oxygen transport.	
Unit 3	
1 Electronic spectroscopy:	
Introduction, theory, instrumentation, types of electronic transitions,	
presentation of electronic spectrum, terms used- chromophore,	
auxochrome, bathochromic shift, hypsochromic shift, hyperchromic	
effect and hypochromic effect , Applications in the structure	
determination of dienes, á,â-unsaturated aldehydes and ketones,	https://youtu.be/ rlHeWZQajc
aromatic compounds.	
2 Infrared spectroscopy:	
Introduction, Types of molecular vibrations- stretching and bending,	
Calculation of vibrational modes, force constant, instrumentation,	https://youtu.be/KGNdg7cSt6M
interpretation of IR, H-stretching, triple bond, double bond and Finger	
print regions, IR spectra of H2O, CO2, C2H5OH, CH3CHO, CH3COOH	
and CH3CONH2.	
Unit 4	
1 NMR spectroscopy: Introduction, spin quantum number, instrumentation,	
Aspects of NMR- number of signals(equivalent and non-equivalent	
protons), positions of signals(chemical shift), intensities of signals,	
splitting of signals(spin-spin coupling), coupling constant, applications.	https://youtu.be/BSnyH5doX6I
2 Mass spectroscopy:	
Introduction, theory, instrumentation-(ion sources), Mass spectra	
of neopentane and methanol, molecular ion peak, base peak, metastable	https://youtu.be/znXgFKmjizo

peak, Rules of fragmentation, applications	
Unit 5	·
1 Elementary Quantum Mechanics 14L	
(i) Limitations of classical mechanics. Plank's quantum theory (postulates	
only). Photoelectric effect - Experiments, observation and Einstein's	https://youtu.be/YqUSyPUFVVY
explanation.	
2 Compton effect and its explanation. (ii) de Broglie	
hypothesis of matter waves. de Broglie's equation. Heisenberg's	
uncertainty principle. (iii) Classical wave equation, derivation of time	
independent Schrodinger's wave equation in one-dimension and its	
extension to a three-dimensional space. Well behaved wave function,	https://youtu.be/Eqxkl1KwxVM
physical significance of wave function	
3 Application of Schrodinger wave equation to a particle in onedimensional	
box and its extension to a three-dimensional box. Concept	https://youtu.be/L2AVIm5kygM
of atomic orbital.	
Unit 6	
1 Electrochemistry: (i) Types of electrode - Standard hydrogen electrode,	
Calomel electrode, Quinhydrone electrode and Glass electrode.	https://youtu.be/29 mk0B4GeQ
Principle of Potentiometric titration.	
2 Study of acid-base, redox and	
precipitation titration. (ii) pH of a solution and pH scale.	https://youtu.be/LkDjQmXs5yM
3 Determination	
of pH of a solution using hydrogen, quinhydrone and glass electrodes.	https://youtu.be/EV-RmW-iyL4
4 Advantage and disadvantage of these electrodes. pH-metric titrations.	https://youtu.be/dDgrSoEJ24c
Determination of pka of a weak acid by pH-metric measurement	
5 Concentration cells - Types of concentration cells, concentration cell	
without transfer and determination of its emf.	https://youtu.be/UkCRvZJB-TE
6 Nuclear Chemistry: (i) Shell model of a nucleus - Assumptions, evidences	
for existence of magic numbers, advantages and limitations. (ii) Liquid	
drop model of a nucleus - Assumptions, similarities between nucleus	
and liquid drop, advantages and limitations	https://youtu.be/yBdxuAdBJME
7 explanation of nuclear	
fission reaction on the basis of liquid drop model. (iii) Nuclear force	

and its explanation on the basis of Meson theory. (iv) Characteristics	
of nuclear reaction, difference between nuclear and chemical reactions.	
Calculation of Q value of a nuclear reaction. (v) Characteristics of	
nuclear fission reaction, fission yield. Fission reaction as an alternative	
source of energy. (vi) Nuclear fusion reaction - Characteristic of a	https://youtu.be/kmT1Bnlbiuc
nuclear fusion reaction. Thermonuclear reactions as a source of energy	
of sun and other stars. Fusion reactions as a potential future source of	
energy. (vii) Applications of radio isotopes in industry, agriculture,	
medicines and bio-sciences with two examples each. (viii) Numericals.	